A Fast and Robust Strategy to Remove Variant-Level Artifacts in Alzheimer Disease Sequencing Project Data

Author:

Belloy Michael E.ORCID,Le Guen YannORCID,Eger Sarah J.ORCID,Napolioni ValerioORCID,Greicius Michael D.,He Zihuai

Abstract

Background and ObjectivesExome sequencing (ES) and genome sequencing (GS) are expected to be critical to further elucidate the missing genetic heritability of Alzheimer disease (AD) risk by identifying rare coding and/or noncoding variants that contribute to AD pathogenesis. In the United States, the Alzheimer Disease Sequencing Project (ADSP) has taken a leading role in sequencing AD-related samples at scale, with the resultant data being made publicly available to researchers to generate new insights into the genetic etiology of AD. To achieve sufficient power, the ADSP has adapted a study design where subsets of larger AD cohorts are collected and sequenced across multiple centers, using a variety of sequencing platforms. This approach may lead to variable variant quality across sequencing centers and/or platforms. In this study, we sought to implement and evaluate filters that can be applied fast to robustly remove variant-level artifacts in the ADSP data.MethodsWe implemented a robust quality control procedure to handle ADSP data. We evaluated this procedure while performing exome-wide and genome-wide association analyses on AD risk using the latest ADSP whole ES (WES) and whole GS (WGS) data releases (NG00067.v5).ResultsWe observed that many variants displayed large variation in allele frequencies across sequencing centers/platforms and contributed to spurious association signals with AD risk. We also observed that sequencing platform/center adjustment in association models could not fully account for these spurious signals. To address this issue, we designed and implemented variant filters that could capture and remove these center-specific/platform-specific artifactual variants.DiscussionWe derived a fast and robust approach to filter variants that represent sequencing center-related or platform-related artifacts underlying spurious associations with AD risk in ADSP WES and WGS data. This approach will be important to support future robust genetic association studies on ADSP data, as well as other studies with similar designs.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Genetics (clinical),Neurology (clinical)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3