Material aging effects on the in-plane lateral capacity of tuff stone masonry walls: a numerical investigation

Author:

Saviano FeliceORCID,Parisi FulvioORCID,Lignola Gian PieroORCID

Abstract

AbstractRecent studies have shown how the variability of material properties affects the nonlinear behaviour of unreinforced masonry (URM) walls. To preserve the historical built heritage, variations in structural capacity of URM buildings associated to aging and deterioration of masonry should be quickly predicted, by integrating with structural health monitoring and risk management. In this study, relationships between structural capacity features and material properties are numerically investigated for single walls, based on a structural modelling strategy that was experimentally validated on full-scale URM walls. The paper proposes an evaluation of the effects of degradation of material properties on the macroscopic descriptors of single masonry walls, such as peak strength and stiffness, also considering the uncertainties in the estimate of those properties. The authors do not attempt to model the physical processes of material aging with time, but assume certain levels of material degradation and investigate their effects on the structural response and capacity. Force–displacement curves and failure modes are associated with the overall nonlinear response of masonry walls due to progressive deterioration of material properties. Regression models are then proposed to predict variations in the peak load-bearing capacity and in -plane lateral stiffness when the mechanical properties of the constituents changed.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3