An Equivalent Frame Digital Twin for the Seismic Monitoring of Historic Structures: A Case Study on the Consoli Palace in Gubbio, Italy

Author:

Sivori Daniele1ORCID,Ierimonti Laura2ORCID,Venanzi Ilaria2ORCID,Ubertini Filippo2ORCID,Cattari Serena1ORCID

Affiliation:

1. Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, Via Montallegro 1, 16145 Genoa, Italy

2. Department of Civil and Environmental Engineering (DICA), University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy

Abstract

Recent advances in computing performance and simulation tools allow today the development of high-fidelity computational models which accurately reproduce the structural behavor of existing structures. At the same time, advancements in sensing technology and data management enable engineers to remotely observe monitored structures in a continuous and comprehensive way. Merging the two approaches is a challenge recently addressed by the engineering research community, which led to the concept of digital twin (DT)—a simulation model continuously fed by sensor data which, throughout the whole lifespan of the structure, stands as its digital proxy. In the seismic field achieving such a task is still problematic, in particular for large and complex structures such as historical masonry palaces. To this aim, the paper proposes the integrated use of DTs and vibration data to support the seismic structural health monitoring of monumental palaces, discussing a practical application to the historical Consoli Palace in Gubbio, Italy. To overcome the computational limitations of classical approaches, an efficient equivalent frame (EF) model of the palace is built and continuously updated in quasi real-time based on modal information identified from vibration data. The performance and accuracy of the Equivalent Frame model are compared with those of a high-fidelity Finite Element representation, highlighting both their feasibility and limitations. Employing modal data recorded across the 15 May 2021 earthquake, the EF model demonstrates the ability to quickly assess the structural integrity of the palace in the post-earthquake scenario, as well as to forecast the residual capacity with respect to future seismic events.

Funder

Italian Ministry of Education, University, and Research

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3