Author:
Ramadhani Moch Ilham,Minarno Agus Eko,Cahyono Eko Budi
Abstract
Object detection based on digital image processing on vehicles is very important for establishing monitoring system or as alternative method to collect statistic data to make efficient traffic engineering decision. A vehicle counter program based on traffic video feed for specific type of vehicle using Haar Cascade Classifier was made as the output of this research. Firstly, Haar-like feature was used to present visual shape of vehicle, and AdaBoost machine learning algorithm was also employed to make a strong classifier by combining specific classifier into a cascade filter to quickly remove background regions of an image. At the testing section, the output was tested over 8 realistic video data and achieved high accuracy. The result was set 1 as the biggest value for recall and precision, 0.986 as the average value for recall and 0.978 as the average value for precision.
Publisher
Universitas Muhammadiyah Malang
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献