Novel Vehicle Detection in Real Time Road Traffic Density Using Haar Cascade Comparing with KNN Algorithm based on Accuracy and Time Mean Speed

Author:

Pavani K.

Abstract

Aim: The main objective of the paper is to detect objects in iconic real time traffic density videos from CCTVs and Cameras using Haar Cascade algorithm and to compare algorithms with K-Nearest Neighbour algorithm (KNN). In this case we tried improving the rate of accuracy in predicting the traffic density. Materials and methods: Haar Cascade algorithm is applied on 5 realistic videos and which consists of more than 250 frames. For the same we evaluated the Accuracy and Precision values. Harr-like function displays the vehicle’s visual structure, and the AdaBoost machine learning algorithm was used to create a classifier by combining individual classifiers. The significance value achieved for finding the accuracy and precision was 0.445 and 0.754 respectively. Results and Discussions: Detection of vehicles in high speed videos is performed by using Haar Cascade which has mean accuracy with 85.22% and mean precision with 90.63% and 60% of mean accuracy and 58.53% mean precision in KNN classifiers. Conclusion: The performance of the Haar Cascade appears to be better than KNN in terms of both Accuracy and Precision.

Publisher

Centivens Institute of Innovative Research

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anomaly Detection Method of Urban Rail Vehicle Timing Data Driven by KNN Algorithm;Lecture Notes on Data Engineering and Communications Technologies;2023

2. KNN Algorithm Analysis Based on Big Data Classification;Cyber Security Intelligence and Analytics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3