GRANULAR NETWORK TRAFFIC CLASSIFICATION FOR STREAMING TRAFFIC USING INCREMENTAL LEARNING AND CLASSIFIER CHAIN

Author:

Zaki Faiz,Afifi Firdaus,Gani Abdullah,Anuar Nor Badrul

Abstract

In modern networks, network visibility is of utmost importance to network operators. Accordingly, granular network traffic classification quickly rises as an essential technology due to its ability to provide high network visibility. Granular network traffic classification categorizes traffic into detailed classes like application names and services. Application names represent parent applications, such as Facebook, while application services are the individual actions within the parent application, such as Facebook-comment. Most studies on granular classification focus on classification at the application name level. Besides that, evaluations in existing studies are also limited and utilize only static and immutable datasets, which are insufficient to reflect the continuous and evolving nature of real-world traffic. Therefore, this paper aims to introduce a granular classification technique, which is evaluated on streaming traffic. The proposed technique implements two Adaptive Random Forest classifiers linked together using a classifier chain to simultaneously produce classification at two granularity levels. Performance evaluation on a streaming testbed setup using Apache Kafka showed that the proposed technique achieved an average F1 score of 99% at the application name level and 88% at the application service level. Additionally, the performance benchmark on ISCX VPN non-VPN public dataset also maintained comparable results, besides recording classification time as low as 2.6 ms per packet. The results conclude that the proposed technique proves its advantage and feasibility for a granular classification in streaming traffic.

Publisher

Univ. of Malaya

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3