A novel bayesian network-based ensemble classifier chains for multi-label classification

Author:

Wang ZhenwuORCID,Zhang Shiqi,Chen Yang,Han MengjieORCID,Zhou Yang,Wan BentingORCID

Abstract

AbstractIn this paper, we address the challenges of random label ordering and limited interpretability associated with Ensemble Classifier Chains (ECC) by introducing a novel ECC method, ECC-MOO&BN, which integrates Bayesian Networks (BN) and Multi-Objective Optimization (MOO). This approach is designed to concurrently overcome these ECC limitations. The ECC-MOO&BN method focuses on extracting diverse and interpretable label orderings for the ECC classifier. We initiated this process by employing mutual information to investigate label relationships and establish the initial structures of the BN. Subsequently, an enhanced NSGA-II algorithm was applied to develop a series of Directed Acyclic Graphs (DAGs) that effectively balance the likelihood and complexity of the BN structure. The rationale behind using the MOO method lies in its ability to optimize both complexity and likelihood simultaneously, which not only diversifies DAG generation but also helps avoid overfitting during the production of label orderings. The DAGs, once sorted topologically, yielded a series of label orderings, which were then seamlessly integrated into the ECC framework for addressing multi-label classification (MLC) problems. Experimental results show that when benchmarked against eleven leading-edge MLC algorithms, our proposed method achieves the highest average ranking across seven evaluation criteria on nine out of thirteen MLC datasets. The results of the Friedman test and Nemenyi test also indicate that the performance of the proposed method has a significant advantage compared to other algorithms.

Funder

National Natural Science Foundation of China

Dalarna University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3