Application of multi-label classification models for the diagnosis of diabetic complications

Author:

Zhou Liang,Zheng Xiaoyuan,Yang Di,Wang Ying,Bai Xuesong,Ye Xinhua

Abstract

Abstract Background Early diagnosis for the diabetes complications is clinically demanding with great significancy. Regarding the complexity of diabetes complications, we applied a multi-label classification (MLC) model to predict four diabetic complications simultaneously using data in the modern electronic health records (EHRs), and leveraged the correlations between the complications to further improve the prediction accuracy. Methods We obtained the demographic characteristics and laboratory data from the EHRs for patients admitted to Changzhou No. 2 People’s Hospital, the affiliated hospital of Nanjing Medical University in China from May 2013 to June 2020. The data included 93 biochemical indicators and 9,765 patients. We used the Pearson correlation coefficient (PCC) to analyze the correlations between different diabetic complications from a statistical perspective. We used an MLC model, based on the Random Forest (RF) technique, to leverage these correlations and predict four complications simultaneously. We explored four different MLC models; a Label Power Set (LP), Classifier Chains (CC), Ensemble Classifier Chains (ECC), and Calibrated Label Ranking (CLR). We used traditional Binary Relevance (BR) as a comparison. We used 11 different performance metrics and the area under the receiver operating characteristic curve (AUROC) to evaluate these models. We analyzed the weights of the learned model and illustrated (1) the top 10 key indicators of different complications and (2) the correlations between different diabetic complications. Results The MLC models including CC, ECC and CLR outperformed the traditional BR method in most performance metrics; the ECC models performed the best in Hamming loss (0.1760), Accuracy (0.7020), F1_Score (0.7855), Precision (0.8649), F1_micro (0.8078), F1_macro (0.7773), Recall_micro (0.8631), Recall_macro (0.8009), and AUROC (0.8231). The two diabetic complication correlation matrices drawn from the PCC analysis and the MLC models were consistent with each other and indicated that the complications correlated to different extents. The top 10 key indicators given by the model are valuable in medical application. Conclusions Our MLC model can effectively utilize the potential correlation between different diabetic complications to further improve the prediction accuracy. This model should be explored further in other complex diseases with multiple complications.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3