Author:
Zhou Liang,Zheng Xiaoyuan,Yang Di,Wang Ying,Bai Xuesong,Ye Xinhua
Abstract
Abstract
Background
Early diagnosis for the diabetes complications is clinically demanding with great significancy. Regarding the complexity of diabetes complications, we applied a multi-label classification (MLC) model to predict four diabetic complications simultaneously using data in the modern electronic health records (EHRs), and leveraged the correlations between the complications to further improve the prediction accuracy.
Methods
We obtained the demographic characteristics and laboratory data from the EHRs for patients admitted to Changzhou No. 2 People’s Hospital, the affiliated hospital of Nanjing Medical University in China from May 2013 to June 2020. The data included 93 biochemical indicators and 9,765 patients. We used the Pearson correlation coefficient (PCC) to analyze the correlations between different diabetic complications from a statistical perspective. We used an MLC model, based on the Random Forest (RF) technique, to leverage these correlations and predict four complications simultaneously. We explored four different MLC models; a Label Power Set (LP), Classifier Chains (CC), Ensemble Classifier Chains (ECC), and Calibrated Label Ranking (CLR). We used traditional Binary Relevance (BR) as a comparison. We used 11 different performance metrics and the area under the receiver operating characteristic curve (AUROC) to evaluate these models. We analyzed the weights of the learned model and illustrated (1) the top 10 key indicators of different complications and (2) the correlations between different diabetic complications.
Results
The MLC models including CC, ECC and CLR outperformed the traditional BR method in most performance metrics; the ECC models performed the best in Hamming loss (0.1760), Accuracy (0.7020), F1_Score (0.7855), Precision (0.8649), F1_micro (0.8078), F1_macro (0.7773), Recall_micro (0.8631), Recall_macro (0.8009), and AUROC (0.8231). The two diabetic complication correlation matrices drawn from the PCC analysis and the MLC models were consistent with each other and indicated that the complications correlated to different extents. The top 10 key indicators given by the model are valuable in medical application.
Conclusions
Our MLC model can effectively utilize the potential correlation between different diabetic complications to further improve the prediction accuracy. This model should be explored further in other complex diseases with multiple complications.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献