Binary rat swarm optimizer algorithm for computing independent domination metric dimension problem

Author:

Batiha Iqbal M.,Mohamed Basma

Abstract

In this article, we look at the NP-hard problem of determining the minimum independent domination metric dimension of graphs. A vertex set B of a connected graph G(V,E) resolves G if every vertex of G is uniquely recognized by its vector of distances to the vertices in B. If there are no neighboring vertices in a resolving set B of G, then B is independent. Every vertex of G that does not belong to B must be a neighbor of at least one vertex in B for a resolving set to be dominant. The metric dimension of G, independent metric dimension of G, and independent dominant metric dimension of G are, respectively, the cardinality of the smallest resolving set of G, the minimal independent resolving set, and the minimal independent domination resolving set. We propose the first attempt to use a binary version of the Rat Swarm Optimizer Algorithm (BRSOA) to heuristically calculate the smallest independent dominant resolving set of graphs. The search agent of BRSOA are binary-encoded and used to identify which one of the vertices of the graph belongs to the independent domination resolving set. The feasibility is enforced by repairing search agent such that an additional vertex created from vertices of G is added to B, and this repairing process is repeated until B becomes the independent domination resolving set. Using theoretically computed graph findings and comparisons to competing methods, the proposed BRSOA is put to the test. BRSOA surpasses the binary Grey Wolf Optimizer (BGWO), the binary Particle Swarm Optimizer (BPSO), the binary Whale Optimizer (BWOA), the binary Gravitational Search Algorithm (BGSA), and the binary Moth-Flame Optimization (BMFO), according to computational results and their analysis.

Publisher

JVE International Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finding the domination number of triangular belt networks;Mathematical Models in Engineering;2024-07-31

2. A special graph for the connected metric dimension of graphs;Mathematical Models in Engineering;2024-07-31

3. Secure metric dimension of new classes of graphs;Mathematical Models in Engineering;2024-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3