Author:
Batiha Iqbal M.,Mohamed Basma,Jebril Iqbal H.
Abstract
The metric representation of a vertex v of a graph G is a finite vector representing distances of v with respect to vertices of some ordered subset S⊆V (G). If no suitable subset of S provides separate representations for each vertex of V(G), then the set S is referred to as a minimal resolving set. The metric dimension of G is the cardinality of the smallest (with respect to its cardinality) minimal resolving set. A resolving set S is secure if for any v∈V–S, there exists x∈S such that (S–{x})∪{v} is a resolving set. For various classes of graphs, the value of the secure resolving number is determined and defined. The secure metric dimension of the graph classes is being studied in this work. The results show that different graph families have different metric dimensions.
Reference25 articles.
1. G. Chartrand, L. Eroh, M. A. Johnson, and O. R. Oellermann, “Resolvability in graphs and the metric dimension of a graph,” Discrete Applied Mathematics, Vol. 105, No. 1-3, pp. 99–113, Oct. 2000, https://doi.org/10.1016/s0166-218x(00)00198-0
2. P. J. Slater, “Domination and location in acyclic graphs,” Networks, Vol. 17, No. 1, pp. 55–64, Oct. 2006, https://doi.org/10.1002/net.3230170105
3. S. J. Seo and P. J. Slater, “Open neighborhood locating dominating sets,” Australasian Journal of Combinatorics, Vol. 46, pp. 109–119, 2010.
4. R. C. Brigham, G. Chartrand, R. D. Dutton, and P. Zhang, “Resolving domination in graphs,” Mathematica Bohemica, Vol. 128, No. 1, pp. 25–36, Jan. 2003, https://doi.org/10.21136/mb.2003.133935
5. B. Mohamed and M. Amin, “Domination number and secure resolving sets in cyclic networks,” Applied and Computational Mathematics, Vol. 12, No. 2, pp. 42–45, May 2023, https://doi.org/10.11648/j.acm.20231202.12