Research on lightweight pedestrian detection based on improved YOLOv5

Author:

Jin Yunfeng,Lu Zhizhan,Wang Ruili,Liang Chao

Abstract

Aiming at the problems of low detection accuracy and the large size of the pedestrian detection algorithm, to improve the edge intelligent recognition capability of the terminal, this paper proposes a lightweight pedestrian detection scheme based on the improved YOLOv5. In this paper, the algorithm first takes the original YOLOv5 as the basic framework and uses the Ghost Bottleneck module to replace the C3 module in the original YOLOv5 network to reduce the number of parameters, eliminate redundant features, and obtain a more lightweight model. Then the attention mechanism CBAM module is added to improve the feature extraction capability and detection accuracy of the algorithm. After experimental verification, the improved lightweight YOLOv5 algorithm significantly reduces the model size and computational cost while guaranteeing accuracy, which is suitable for deployment in edge devices.

Publisher

JVE International Ltd.

Subject

Mechanical Engineering,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Lightweight Model for Detecting Overlapping Anomalies in Steel Sections Based on YOLOv5;2024 7th International Conference on Advanced Algorithms and Control Engineering (ICAACE);2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3