Visual reconstruction method of architectural space under laser point cloud big data

Author:

Ma Xiyin,Li Jian

Abstract

In order to solve the problem that the reconstruction accuracy and integrity are affected due to the large amount of point cloud data in the process of building space reconstruction, the visual reconstruction method of building space under laser point cloud big data is studied. The three-dimensional laser scanner is used to collect the laser point cloud big data in the building space, and the laser point cloud big data is organized and processed through three steps: hierarchical calculation of the point cloud pyramid, thinning treatment and block treatment. From the processing results of laser point cloud big data, the line features of building space are extracted based on the improved Mean-shift method, and the continuous broken lines in the point cloud data of building space are extracted by using the double radius threshold line tracing method. According to the feature extraction results of point cloud data in building space, the visual reconstruction of building space is completed through the process of translation matching and space matching. The experimental results show that this method can realize the visual reconstruction of architectural space, and the average reconstruction accuracy is higher than that of 97 %, and the reconstruction completion and smoothness are higher than 95 %.

Publisher

JVE International Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3