Computer Vision Based Machine Learning and Deep Learning Approaches for Identification of Nutrient Deficiency in Crops: A Survey

Author:

Sudhakar M.ORCID,Swarna Priya R. M.ORCID

Abstract

Agriculture is a significant industry that plays a major role in a country’s sustainable environment and economic development. The global population demands increased food production with minimal losses. Nutrient deficiency is one of the major and crucial factors influencing crop production significantly. Common techniques for determining crop nutrition status are the diagnosis of plant morphology, Enzymology, chemical effects, fertilization, etc. However, the above techniques are invasive and time-consuming or infeasible while considering varied production practices in different locations, environments and climatic conditions. Computer Vision is an area of Computer Science that deals with creating Artificial Intelligence based vision systems that can use image data, process, and analyze as humans perform. Early Detection of Crop Nutrient deficiencies favors the farmers to monitor the affected crops and plan for the manure or fertilizer application, which supports to regain of the crop’s efficiency for attaining its maximum yield. Modern computer vision systems rely on Machine Learning (ML), Remote sensing, Satellite imagery, unmanned aerial vehicles (UAVs), Internet of things (IoT) based sensor devices, and Deep Learning (DL) models that use algorithms to extract required features from data. The objective of this work is to provide an overview of recent research and identify the scope of computer vision-based technologies used for identifying crop nutrient content and deficiency, find research challenges in predicting nutrient imbalance in comparison with plant diseases that show certain similar characteristics, thereby to improve crop health and production.

Publisher

Technoscience Publications

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Pollution

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3