Author:
Bera Asish,Bhattacharjee Debotosh,Krejcar Ondrej
Abstract
AbstractCrop yield production could be enhanced for agricultural growth if various plant nutrition deficiencies, and diseases are identified and detected at early stages. Hence, continuous health monitoring of plant is very crucial for handling plant stress. The deep learning methods have proven its superior performances in the automated detection of plant diseases and nutrition deficiencies from visual symptoms in leaves. This article proposes a new deep learning method for plant nutrition deficiencies and disease classification using a graph convolutional network (GNN), added upon a base convolutional neural network (CNN). Sometimes, a global feature descriptor might fail to capture the vital region of a diseased leaf, which causes inaccurate classification of disease. To address this issue, regional feature learning is crucial for a holistic feature aggregation. In this work, region-based feature summarization at multi-scales is explored using spatial pyramidal pooling for discriminative feature representation. Furthermore, a GCN is developed to capacitate learning of finer details for classifying plant diseases and insufficiency of nutrients. The proposed method, called Plant Nutrition Deficiency and Disease Network (PND-Net), has been evaluated on two public datasets for nutrition deficiency, and two for disease classification using four backbone CNNs. The best classification performances of the proposed PND-Net are as follows: (a) 90.00% Banana and 90.54% Coffee nutrition deficiency; and (b) 96.18% Potato diseases and 84.30% on PlantDoc datasets using Xception backbone. Furthermore, additional experiments have been carried out for generalization, and the proposed method has achieved state-of-the-art performances on two public datasets, namely the Breast Cancer Histopathology Image Classification (BreakHis 40$$\times $$
×
: 95.50%, and BreakHis 100$$\times $$
×
: 96.79% accuracy) and Single cells in Pap smear images for cervical cancer classification (SIPaKMeD: 99.18% accuracy). Also, the proposed method has been evaluated using five-fold cross validation and achieved improved performances on these datasets. Clearly, the proposed PND-Net effectively boosts the performances of automated health analysis of various plants in real and intricate field environments, implying PND-Net’s aptness for agricultural growth as well as human cancer classification.
Funder
Birla Institute of Technology and Science, Pilani
Publisher
Springer Science and Business Media LLC
Reference79 articles.
1. Jung, M. et al. Construction of deep learning-based disease detection model in plants. Sci. Rep. 13, 7331 (2023).
2. Aiswarya, J., Mariammal, K. & Veerappan, K. Plant nutrient deficiency detection and classification-a review. In 2023 5th International Conference Inventive Research in Computing Applications (ICIRCA). 796–802 (IEEE, 2023).
3. Yan, Q., Lin, X., Gong, W., Wu, C. & Chen, Y. Nutrient deficiency diagnosis of plants based on transfer learning and lightweight convolutional neural networks Mobilenetv3-large. In Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition. 26–33 (2022).
4. Sudhakar, M. & Priya, R. Computer vision based machine learning and deep learning approaches for identification of nutrient deficiency in crops: A survey. Nat. Environ. Pollut. Technol. 22 (2023).
5. Noon, S. K., Amjad, M., Qureshi, M. A. & Mannan, A. Use of deep learning techniques for identification of plant leaf stresses: A review. Sustain. Comput. Inform. Syst. 28, 100443 (2020).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献