Crystal Growing Design method: An investigation into the growing of crystals for jewellery designs

Author:

Boons Sofie1ORCID

Affiliation:

1. ISNI: 0000000120345266 University of the West of England, UK

Abstract

Grown crystals are used for a range of novel innovations supporting a wide array of industries such as technology, medicine and electronics. Within the jewellery industry however, grown crystals are only used in a limited capacity and those of gemstone quality mainly as a surrogate for mined gemstones. They have remained largely underused, despite their potential sustainability credentials and the creative possibilities the incorporation of the process of crystal growth holds for jewellery designers. The bespoke growth of gemstone quality crystals could lead to highly unique jewellery designs which would result in higher consumer attachment. This in addition to the potentially more sustainable production of these stones would lead to overall more sustainable products. To address the barriers that are holding jewellery designers back from exploring the growth of crystals in their practice, and to address the knowledge gap that underpins this barrier, this article presents a practice-based exploration into the method of Crystal Growing Design for jewellery. Alongside reviewing a selection of the limited number of jewellery designers who have explored organic crystal growth, the article discusses the results of the practice-based explorations done. Three hypotheses derived from the characteristics and advantages of Growing Design were tested in three case studies and aimed to explore the design opportunities the method provides designers when (1) growing in situ either in designs or (2) around shapes or (3) when utilizing the grow-ability of the process as a feature. Because the growth of gemstone quality crystals requires more elaborate and high-cost equipment, sugar, alum and salt were experimented with as a prelude to further experimentation with the technique using gemstone grade crystals. Through utilizing an explorative Do-It-Yourself (DIY) approach, the author documents and discusses the opportunities and challenges presented by the incorporation of a crystal growth method into the jewellery design practice. The research article will additionally reflect on the DIY growth of these non-gemstone quality crystals as a meaningful learning process for jewellery designers wishing to gain a deeper understanding of crystal growth. The DIY growth of crystals can be considered a valuable tinkering process to investigate design ideas. Which is particularly relevant since the method of growing crystals holds creative potential when designing jewellery in collaboration with crystal growers, or through incorporating gemstone crystal growth processes, which are the topic of the author’s overarching Ph.D. research.

Funder

UKRI, Research England, Expanding Excellence in England (E3) Fund

Publisher

Intellect

Subject

Visual Arts and Performing Arts

Reference40 articles.

1. Anderson, K. R. and Carboo, S. S. (2016), ‘10 best newcomers at Munich Jewelry Week 2016’, Art Jewellery Forum, March, https://artjewelryforum.org/10-best-newcomers-at-munich-jewelry-week-2016. Accessed 5 October 2020.

2. Vital design,2012

3. A case of designing with an underdeveloped computational composite for materials experience,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3