Understanding Gardar Sahlberg with neural nets: On algorithmic reuse of the Swedish SF archive

Author:

Eriksson Maria1ORCID,Skotare Tomas2ORCID,Snickars Pelle3ORCID

Affiliation:

1. ISNI: 0000000110343451 Umeå University and ISNI: 0000000419370642 Basel University

2. ISNI: 0000000110343451 Umeå University

3. ISNI: 0000000109302361 Lund University

Abstract

In this article, we re-trace the history of the Swedish SF archive and reflect on how this collection of historic newsreels has been reappropriated and remixed throughout more recent media history. In particular, we focus on the work of director and film historian Gardar Sahlberg, who made extensive use of the SF archive, first in a series of documentary films, then in a number of historical TV programmes. We are interested in how historic film footage travels and circulates through time, but foremost we explore how algorithms can help identify instances of audio-visual reuse in large datasets. Hence the article discusses algorithmic ways of examining archival film reuse, introducing a method for mapping video reuse with the help of artificial intelligence or more precisely machine learning that uses so-called convolutional neural nets. The article presents the Video Reuse Detector (VRD), a tool that uses machine learning to identify visual similarities within a given audio-visual database such as the SF archive.

Funder

European Union’s Joint Programming Initiative in Cultural Heritage and Global Change, Digital Heritage

Publisher

Intellect

Subject

Visual Arts and Performing Arts

Reference73 articles.

1. SF:s journalarkiv guldgruva för TV;Svenska Dagbladet,1963

2. SF-journaler till TV för tre miljoner;Dagens Nyheter,1964

3. Punkt för punkt: tv-tablå;Svenska Dagbladet,1966

4. Distant viewing toolkit: A python package for the analysis of visual culture;Journal of Open Source Software,2020

5. Bazán-Gil, Virginia (2020), ‘Artificial intelligence: An object of desire’, International Federation of Television Archives, 13 May, https://fiatifta.org/artificial-intelligence-an-object-of-desire/. Accessed 6 October 2022.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3