Convential exergy aspect of heat transfer and fluid flow through spiral passage subjected to consant wall temperature

Author:

Faraj El-Sagier1

Affiliation:

1. University of Tripoli

Abstract

Exergy destruction of heat transfer and turbulent convective fluid flow through spiral passage subjected to constant wall temperature is analyzed. Constant and temperature dependent thermo physical properties models of process fluid have been adopted. Heat transfer characteristics and both thermal as well viscous fluid friction exergy destruction are investigated. The local variation of total (thermal and viscous dissipation) exergy destruction was studied along the spiral passage. Some of second law of thermodynamic dimensionless parameters, such as Bejan (Be) and entropy generation (Ngen) numbers were considered. It is found that De (Dean Number) with its magnitude is a measure of the secondary flow, and has opposite influence on these two numbers along the passage. The study concluded that total exergy destruction was dominated by thermal effects due to temperature difference. But the influence of irreversibility due to pressure drop was found less significant. This effect is of a particular interest in the heat transfer and fluid flow in spiral passages where secondary flow phenomenon plays an important role in thermal mixing and conversion of viscous dissipation into thermal energy through narrowing passage.

Publisher

i-manager Publications

Subject

Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3