Exergy efficiency and exergy destruction assessment of heat transfer and fluid flow through spiral passages using source-sink model

Author:

Faraj El-Sagier1

Affiliation:

1. University of Tripoli

Abstract

Exergy efficiency and exergy destruction of forced turbulent convective fluid flow through spiral passages using sourcesink model are assessed. Constant and temperature dependent thermophysical properties of process fluid in sink regions have been considered, while in the source regions phase change material is kept at constant temperature. Moreover, the effect of a secondary flow phenomenon due to spiral motion of the fluid flow through narrowing spiral passages has been evaluated in the sink passage domain. It was found that this phenomenon plays an important role in decreasing the exergy destruction as a result of energy exchange between source and sink in this compact type of energy carrier or storage equipment. It was found that the De (Dean Number) whose magnitude is a measure of the secondary flow, has positive impact on exergy efficiency while decreasing along the spiral passage. The fluid properties that are temperature dependent have a significant influence on the enhancement of heat transfer process, exergy efficiency and exergy destruction. It is concluded that the source-sink model could be considered from engineering point of view as a good simple model for evaluating the thermodynamic performance of this type of thermal energy process device.

Publisher

i-manager Publications

Reference25 articles.

1. Application of Second Law Analysis in Heat Exchanger Systems

2. A Study of Entropy Generation in Fundamental Convective Heat Transfer

3. Second law analysis in heat transfer

4. Bejan, A. (1982). Entropy Generation through Heat and Fluid Flow. Wiley, New York.

5. Bejan, A. (1988). Advanced Engineering Thermodynamics. Wiley & Sons. New York.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3