Analysis of carbon nanotube for low power nano electronics applications

Author:

Pradeep Singh Yadav1,Chinmay Chandrakar2,Anil Kumar Sahu3

Affiliation:

1. Sagar Institute of Science and Technology

2. Rungta College of Engineering and Technology

3. Bharat Institute of Engineering and Technology

Abstract

In the area of nanotechnology, carbon nanotubes are a notable and remarkable invention. Its structure is much similar to the structure of graphite. CNTs are small in size, light in weight, have good strength, and have good conductivity, making them the building blocks of futuristic new technologies. CNTs have promised to be the catalyst for the next revolution in technology. A broad range of processes are available to produce various types of CNTs, depending on the rolling times of graphite sheets. In this paper, different types of CNTs, their properties, ways of synthesis such as the arc discharge method and chemical vapor deposition, and application have been covered. Outlining their respective advantages and challenges. SWCNTs exhibit high carrier mobilities and tunable bandgaps, making them suitable for transistor devices and interconnects in integrated circuits. DWCNTs offer enhanced mechanical stability and electrical conductivity, catering to applications in flexible electronics and energy storage devices. MWCNTs, though lacking distinct properties of SWCNTs and DWCNTs, find utility in composites, sensors, and biomedical devices due to their ease of synthesis and lower cost.

Publisher

i-manager Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3