Design and optimization of MSI-enabled multi-precision binary multiplier architecture

Author:

Rajkumar K.1

Affiliation:

1. Shri Shankaracharya Group of Institution

Abstract

Arithmetic Logic Units (ALUs) are key elements within processors, executing a variety of operations including multiplication, division, addition, and subtraction. Among these, multiplication stands out as the most frequently utilized function within ALUs. This study presents an innovative MSI-interfaced multiplier architecture designed for integration into a multi-precision floating-point multiplier framework. This novel architecture offers configurations for 24-bit, 53-bit, 113-bit, and 237-bit binary operations, corresponding to single, double, quadruple, and octuple precision modes of floating-point computation. Notably, it enhances throughput by accommodating the multiplication of multiple batches of inputs with each operation initiation, surpassing existing binary multiplication systems. A unique Mantissa Similarity Investigation (MSI) implementation is developed and integrated into the binary multiplier architecture. Comparative analysis of the path delay in 24-bit mode against existing 24-bit multipliers demonstrates that the novel MSI-interfaced binary multiplier architecture, with and without MSI, exhibits reduced path delay compared to all existing systems, as anticipated.

Publisher

i-manager Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3