CFD analysis and aerodynamic effects of add-on devices on an audi TT vehicle model

Author:

Malik F. Elmzughi1,Mohammed A. Elhaj1,Elhadi I. Dekam1,Al Hussein M. Saad1

Affiliation:

1. University of Tripoli

Abstract

Environmental issues and increased fuel prices are driving automotive manufacturers to develop more fuel-efficient vehicles with lower emissions. Due to the limitations of conventional wind tunnel experiments and rapid developments in computer hardware, considerable efforts have been invested to study vehicle aerodynamics computationally. The ANSYS computer software package is employed, and 3D computer model cars are designed by the SolidWorks software. The Fluent subpackage is used to evaluate the aerodynamic behavior. This paper concentrates on the prediction of lift and drag for the car body using Computational Fluid Dynamics (CFD) on three different models of vehicles for simulation without any devices, with a rear wing or spoiler, and with vortex generators. Turbulence modeling was done with the realizable k-ε model using standard wall functions. The computational results for the three models are provided. The drag and lift coefficients that we have found are 0.4142 and 0.4338, respectively; compared with model 2, they are 0.4585 and 0.0387, and for model 3, they are 0.3971 and 0.3858, respectively. Model 2 has shown that the aerodynamic drag has increased from 0.4142 to 0.4585, which is a 10.69% drag increment. In addition, it showed an increase in negative lift by reducing the lift coefficient from 0.4338 to -0.0387, which is a 91.07% lift reduction by comparing with model 1. Similarly, model 3 has shown that the aerodynamic drag is reduced from 0.4142 to 0.3971, which is a 4.12% drag reduction, and it also showed an increase in negative lift by decreasing the lift coefficient from 0.4338 to 0.3858, which is a 11.06% lift reduction.

Publisher

i-manager Publications

Reference10 articles.

1. Ansys. (n.d.). Ansys Fluent Adjoint Solver-based Optimization. Retrieved from https://www.ansys.com/en-in/resource-center/webinar/ansys-fluent-adjoint-solver-basedoptimization

2. Drag Reduction of Passenger Car Using Add-On Devices

3. Damjanović, D., Kozak, D., Živić, M., Ivandić, Ž., & Baškarić, T. (2011). CFD analysis of concept car in order to improve aerodynamics. Járműipari Innováció, 1(2), 108-115.

4. Hucho, W. H. (1995). Aerodynamics of road vehicles. Progress in Technology, 49, 3-60.

5. Katz, J. (2008). Race-Car Aerodynamics. McGraw-Hill Companies.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3