Drag Reduction of Passenger Car Using Add-On Devices

Author:

Bansal Ram1,Sharma R. B.2

Affiliation:

1. Department of Automobile Engineering, RJIT BSF Academy, Tekanpur, India

2. Mechanical Engineering Department, RJIT BSF Academy, Tekanpur, India

Abstract

This work proposes an effective numerical model using the Computational Fluid Dynamics (CFD) to obtain the flow structure around a passenger car with different add-on devices. The computational/numerical model of the passenger car and mesh was constructed using ANSYS Fluent which is the CFD solver and employed in the present work. In this study, numerical iterations are completed, and then aerodynamic data and detailed complicated flow structure are visualized. In the present work, a model of generic passenger car was developed using solidworks, generated the wind tunnel, and applied the boundary conditions in ANSYS workbench platform, and then testing and simulation have been performed for the evaluation of drag coefficient for passenger car. In another case, the aerodynamics of the most suitable design of vortex generator, spoiler, tail plates, and spoiler with VGs are introduced and analysed for the evaluation of drag coefficient for passenger car. The addition of these add-on devices are reduces the drag-coefficient and lift coefficient in head-on wind. Rounding the edges partially reduces drag in head-on wind but does not bring about the significant improvements in the aerodynamic efficiency of the passenger car with add-on devices, and it can be obtained. Hence, the drag force can be reduced by using add-on devices on vehicle and fuel economy, stability of a passenger car can be improved.

Publisher

Hindawi Limited

Subject

General Medicine

Reference6 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CFD analysis and aerodynamic effects of add-on devices on an audi TT vehicle model;i-manager's Journal on Mechanical Engineering;2024

2. Study on aerodynamic drag effect of a rear spoiler on a passenger car using CFD;PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON FRONTIER OF DIGITAL TECHNOLOGY TOWARDS A SUSTAINABLE SOCIETY;2023

3. Aerodynamic simulation of car bumper products made of rattan fiber composite material;SIXTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2022);2023

4. Numerical Investigation on Enhanced Aerodynamic Performance of a Bus using Vortex Generators - Air Tab and Shark Fin;2022 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS);2022-12-08

5. Passive Drag Reduction of the Square Back Truck Body;International Journal of Automotive and Mechanical Engineering;2022-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3