Cerebral infraction prediction system using ECG and PPG bio-signal

Author:

Dhanushya S1

Affiliation:

1. Salem College of Engineering and Technology

Abstract

Since stroke causes death or serious disability, active primary prevention and early detection of prognostic symptoms are very important. Stroke can be divided into ischemic stroke and hemorrhagic stroke, and they should be minimized by emergency treatment such as thrombolytic or coagulant administration. It is essential to detect in real time the precursor symptoms of stroke, which occur differently for each individual, and to provide professional treatment by a medical institution within the proper treatment window. However, studies have focused on developing acute treatment or clinical treatment guidelines after the onset of stroke rather than detecting the prognostic symptoms of stroke. In particular, studies have mostly used image analysis such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT) to detect and predict prognostic symptoms in stroke patients. Not only are these methodologies difficult to apply early in real time, but they also have limitations in terms of long testing times and high costs. This paper proposes a system that can predict and semantically interpret stroke prognostic symptoms based on machine learning using multimodal biosignals from Electrocardiogram (ECG) and Photoplethysmogram (PPG). As a result, the real-time prediction of stroke prognosis in elderly patients showed simultaneously high prediction accuracy and performance. Additionally, the CNN-LSTM model using raw data of ECG and PPG demonstrated a satisfactory prediction accuracy of 99.15%.

Publisher

i-manager Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3