Machine-Learning-Based Elderly Stroke Monitoring System Using Electroencephalography Vital Signals

Author:

Choi Yoon-A,Park Sejin,Jun Jong-Arm,Ho Chee Meng Benjamin,Pyo Cheol-Sig,Lee HansungORCID,Yu JaehakORCID

Abstract

Stroke is the third highest cause of death worldwide after cancer and heart disease, and the number of stroke diseases due to aging is set to at least triple by 2030. As the top three causes of death worldwide are all related to chronic disease, the importance of healthcare is increasing even more. Models that can predict real-time health conditions and diseases using various healthcare services are attracting increasing attention. Most diagnosis and prediction methods of stroke for the elderly involve imaging techniques such as magnetic resonance imaging (MRI). It is difficult to rapidly and accurately diagnose and predict stroke diseases due to the long testing times and high costs associated with MRI. Thus, in this paper, we design and implement a health monitoring system that can predict the precursors of stroke diseases in the elderly in real time during daily walking. First, raw electroencephalography (EEG) data from six channels were preprocessed via Fast Fourier Transform (FFT). The raw EEG power values were then extracted from the raw spectra: alpha (α), beta (β), gamma (γ), delta (δ), and theta (θ) as well as the low β, high β, and θ to β ratio, respectively. The experiments in this paper confirm that the important features of EEG biometric signals alone during walking can accurately determine stroke precursors and occurrence in the elderly with more than 90% accuracy. Further, the Random Forest algorithm with quartiles and Z-score normalization validates the clinical significance and performance of the system proposed in this paper with a 92.51% stroke prediction accuracy. The proposed system can be implemented at a low cost, and it can be applied for early disease detection and prediction using the precursor symptoms of real-time stroke. Furthermore, it is expected that it will be able to detect other diseases such as cancer and heart disease in the future.

Funder

This work was supported by the National Research Council of Science & Technology (NST) grant by the Korea government (MSIP).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ASO-DKELM: Alpine skiing optimization based deep kernel extreme learning machine for elderly stroke detection from EEG signal;Biomedical Signal Processing and Control;2024-02

2. Hybrid deep learning and metaheuristic model based stroke diagnosis system using electroencephalogram (EEG);Biomedical Signal Processing and Control;2024-01

3. Predicting Functional Outcome After Ischemic Stroke Using Logistic Regression and Machine Learning Models;Earthline Journal of Mathematical Sciences;2023-11-17

4. OPTIMIZATION ENABLED DEEP LEARNING FOR STROKE DISEASE PREDICTION FROM MULTIMODALITIES;Journal of Mechanics in Medicine and Biology;2023-09-05

5. EEG-ECG Extraction for Wearable All-in-One Healthcare Device;2023 IEEE 6th International Conference on Electrical, Electronics and System Engineering (ICEESE);2023-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3