CORRELATION OF THE SURFACE STRUCTURE OF THE RuO2/TiAND TiO2 /TiFILMS WITH ELECTROCHEMICAL IMPEDANCE DATA

Author:

Linyucheva OlgaORCID,Pershina KatherineORCID

Abstract

The surface structure and nature of the capacitance formation of RuO2/Ti and TiO2 /Ti films are discussed. The factors affecting the reversibility of the adsorption-desorption processes of oxygen on the surface of RuO2/Ti and TiO2 /Ti films are described. The influence of the geometry of the pore, ruthenium content, thickness of the films, and the capacitance value of oxide films was studied using electron microscopy and electrochemical impedance spectroscopy. The changes in pore content and their geometry depending on Ru concentration are fixed by electron microscopy. The changing capacitance and capacitance dispersion in a wide frequency range was used to obtain 3D images of the film's surface. A scheme of the adsorption-absorption ratio changing in relation to the pore’s structure of the films was proposed. The study of the composition, morphological structure and electrochemical behaviour of RuO2/Ti and TiO2 /Ti films determined the impact of the pore shape of surface films on the adsorption-absorption ratio of oxygen, which regulated technical data of sensors. By changing the capacitance and capacitance dispersion in a wide frequency range, it was proposed to obtain 3D images of the surface. It was found that decrease of DEL capacitance has following relationships: large V-shaped pores on the boundary of titanium base and oxide film and on the surface of film > small V-shaped pores on the boundary of titanium base and oxide film, and large pores on the surface of film > rectangular-shaped pores on the boundary of titanium base and oxide film and small V-shaped pores on the surface of film. The formation of the pore geometry and surface structure is dependent on the ration of ruthenium and the thickness of films. So, it is possible to change the morphological and electrochemical properties of sensors by the regulation of ruthenium content.

Publisher

V.I. Vernadsky Institute of General and Inorganic Chemistry

Subject

Energy Engineering and Power Technology,Fuel Technology,Process Chemistry and Technology,Economic Geology,Fuel Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3