THEORETICAL BASICS OF MONITORING THE CONDITION OF THE ELECTRODES OF CHEMICAL CURRENT SOURCES BY THE METHOD OF ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

Author:

Ryabokin Oleg

Abstract

On the basis of the conducted critical review of modern physical models of the porous electrode, it сan be stated that under the conditions of non-uniform mass transfer taking into account the depth of the electrode, it is possible not only to develop new porous electrodes for a certain application, but also to control the state of electrochemical systems as a whole using the non-destructive method of electrochemical impedance spectroscopy. The presence of a macroscopic model of porous electrode allows one to use the integration of parameters over the surface of the electrode and obtain  the average values of current, resistance and capacity within the electrode using the method of averaging in the volume ele­ment within the electrode, where porosity is the volume fraction of the void within the element, which is filled with electrolyte solution. This is the theoretical basis for using electrochemical impedance spectroscopy to assess the state of electrodes in electrochemical current sources. To take into account the influence of the aqueous electrolyte, it is possible to use a model taking into account the area of the effective wetted surface, which makes it possib­le to relate the wetting of the electrode pores with the electrolyte solution to the change in electrical conductivity and polarization of the electrode surface. In this case, when usingelectrochemical impedance spectroscopy, it is possible to obtain information about the following changes in primary current sources: 1– the effect of temperature, which leads to a decrease in the areas of the electrode wetted by the electrolyte, which affect the value of the capacity of the DEL, 2 – chemical processes that lead to the destruction of hydrophilic pores and pores with hydrophilic-hydrophobic walls, an increase in the hydrophobic component on the surface of the electrode, 3 – mechanical destruction of the electrodes. The use of models that take into account the geometry of pores makes it possible to obtain correct data for the analysis of the porous surface in the presence of an electrolyte and in cases of gas phase adsorption in  presence of closed pores, as well as to use the value of the capacity on the surface of  electrodes to assess the state of their performance.

Publisher

V.I. Vernadsky Institute of General and Inorganic Chemistry

Subject

Energy Engineering and Power Technology,Fuel Technology,Process Chemistry and Technology,Economic Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3