Control de acceso vehicular mediante machine learning

Author:

Palmera Quintero Luis ManuelORCID,Rincón Pinzón Miguel AlbertoORCID,Ramírez Orellano Luis OctavioORCID

Abstract

El lograr aplicar técnicas de machine learning implica usar tecnología que apunte a la innovación y que brinden a las empresas ciertas ventajas estratégicas frente a la competencia que enfrentan. El propósito de esta investigación es desarrollar un sistema de reconocimiento de patrones para identificar placas vehiculares que utilice técnicas de aprendizaje automático para controlar el ingreso de vehículos a las instalaciones de la Universidad. La metodología utilizada es Scrum, permitiendo un trabajo cíclico incremental “sprints”, en la que se contó con tiempos cortos en donde se realizó un número de tareas, logrando una planificación y control del desarrollo del proyecto, cumpliendo con tareas programadas, interviniendo tres roles el scrum master, el producto owner y el team. La solución está construida por un conjunto de pequeños servicios, para garantizar la reusabilidad, escalabilidad, flexibilidad y todas las ventajas que nos brinda una arquitectura por microservicios. Los resultados del desarrollo tecnológico en la investigación permitieron demostrar que es posible identificar y reconocer las placas con precisión y rapidez utilizando modelos y algoritmos de aprendizaje automático, logrando superar dificultades que incluyen diversas condiciones de imagen, detección y segmentación precisas de matrículas, así como la adaptabilidad del sistema a diversas fuentes, tamaños y estilos de matrículas.

Publisher

Universidad de Pamplona

Reference25 articles.

1. Y. A. Franco, «Machine Learning aplicado a dificultades financieras y quiebra empresarial: Una revisión de literatura, » Corporación Universitaria Autónoma de Nariño, Colombia., vol. 4, pp. 277 - 329, 2023.

2. M. Pérez y R. Beltrán, «Inteligencia Artificial y Experiencia de usuario: Revisión de la Literatura a Través de un estudio Bibliométrico,» Universidad Rey Juan Carlos, pp. 1-37, 2023.

3. V. Alvear Puertas, P. Rosero Montalvo, D. Peluffo Ordóñez y J. Pijal Rojas, «Internet de las Cosas y Visión Artificial, Funcionamiento y Aplicaciones: Revisión de Literatura,» Revista Enfoque UTE, vol. 8, nº 1, pp. 244 - 256, 2017.

4. R. Hernández, C. Fernández y P. Baptista, «Metodología de la Investigación,» McGraw-Hill, pp. 1-150, 2016.

5. G. P. Guevara Alban, A. E. Verdesoto Arguello y N. E. Castro Molina, «Metodologías de investigación educativa (descriptivas, experimentales, participativas, y de investigación-acción),» Revista Científica Mundo de la Investigación y el Conocimiento, pp. 163-173, 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3