Affiliation:
1. Don State Technical University
Abstract
Introduction. The article describes the approach to solving the problem of complex technical system troubleshooting based on expert knowledge modeling. Intelligent information systems are widely used to solve the problems of diagnostics of multilevel systems including combine harvesters. The formal description of the subject domain knowledge is the framework for building the knowledge base of these systems. The sequence of creating an expert system knowledge base in accordance with production rules is considered.
Materials and Methods. The approach is founded on the fault function table. As the object of diagnostics, one of the subsystems of the combine harvester electric equipment “opening the hopper roof flaps” is considered. The basis for constructing a sequence of elementary checks is a system of logical equations describing both the serviceable and possible faulty states of the subsystem.
Results. A structural logic model is developed. As a result of analyzing the fault function table, the sets of elementary checks are determined. Four criteria have been used to analyze the weight of these checks. The authors have determined optimal sequence of checks and have developed a decision tree, which allows finding the cause of the malfunction and is the basis for creating the knowledge base of an intelligent information system. A fragment of the knowledge base is given.
Discussion and Conclusion. The proposed approach of expert knowledge modelling increases the efficiency of the unit for troubleshooting of the intelligent decision support system. It makes possible to structure the base of expertise and establishing the optimal sequence of elementary checks. This allows determining the optimal sequence of application of the knowledge base production rule that makes it possible to reduce the time of restoring the serviceability of combines.
Publisher
National Research Mordovia State University MRSU
Reference19 articles.
1. Borisova L.V., Nurutdinova I.N., Dimitrov V.P., et al. Selecting a Strategy for Determining the Combine Harvester Parameter Settings. Inzhenernyye tekhnologii i sistemy = Engineering Technologies and Systems. 2020; 30(1):60-75. (In Russ., abstract in Eng.) DOI: https://doi.org/10.15507/2658-4123.030.202001.060-075
2. Rogovskii I., Titova L., Novitskii A., Rebenko V. Research of Vibroacoustic Diagnostics of Fuel System of Engines of Combine Harvesters. In: Proceedings of International Scientific Conference “Engineering for Rural Development” (22-24 May 2019). Jelgava; 2019. Pp. 291-298. (In Eng.) DOI: https://doi.org/10.22616/ERDev2019.18.N451
3. Rogovskii I.L., Liubarets B.S., Voinash S.A., et al. Research of Diagnostic of Combine Harvesters at Levels of Hierarchical Structure of Systems and Units of Hydraulic System. Journal of Physics: Conference Series. 2020; 1679. (In Eng.) DOI: https://doi.org/10.1088/1742-6596/1679/4/042038
4. Dunaev A.V., Kazakova V.A., Shinkevich V.A. Relevance of Standards on Servicing and Repair of Agricultural Machinery. Standarty i kachestvo = Standarts and Quality. 2018; (1):36-38. Available at: https://ria-stk.ru/stq/adetail.php?ID=165761 (accessed 12.03.2021). (In Russ., abstract in Eng.)
5. Liang Z., Li Y., Xu L. Grain Sieve Loss Fuzzy Control System in Rice Combine Harvesters. Applied Sciences. 2019; 9(1). (In Eng.) DOI: https://doi.org/10.3390/app9010114
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献