Grain Sieve Loss Fuzzy Control System in Rice Combine Harvesters

Author:

Liang Zhenwei,Li Yaoming,Xu Lizhang

Abstract

The main working parts of the cleaning device of a rice combine harvester can be controlled by an established control strategy in real time based on the monitored grain sieve loss. This is an efficient way to improve their cleaning adaptability, since as a consequence, the main working parameters of combine harvesters can automatically adapt to crop and environment changes, and the corresponding cleaning performance can be improved. To achieve the target of cleaning control based on the monitored grain sieve loss, a fuzzy control system was developed, which selected S7-1200 PLC as the main control unit to build the lower computer hardware system, utilized ladder language to complete the system compilation, and used LabVIEW 14.0 software to design the host–computer interface. The effects of fan speed, guide plate angle, and sieve opening on the grain sieve loss and grain impurity ratio have been investigated through a large number of bench tests. The relevance level of the operating parameters on the performance parameters has been determined also, and finally, a fuzzy control model was developed for the cleaning system. The experiment results indicated that the designed fuzzy control model can control the cleaning section settings, such as fan speed and guide plate angle automatically, and reduce the grain sieve loss to some extent.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3