The definable content of homological invariants I: Ext$\mathrm{Ext}$ and lim1$\mathrm{lim}^1$

Author:

Bergfalk Jeffrey1,Lupini Martino2,Panagiotopoulos Aristotelis3

Affiliation:

1. Departament de Matemàtiques i Informàtica Universitat de Barcelona, Gran Via de les Corts Catalanes Barcelona Catalonia Spain

2. Dipartimento di Matematica Università di Bologna, Piazza di Porta S. Donato Bologna BO Italy

3. Kurt Gödel Research Center Faculty of Mathematics University of Vienna, Kolingasse 14‐16 Wien Austria

Abstract

AbstractThis is the first installment in a series of papers illustrating how classical invariants of homological algebra and algebraic topology may be enriched with additional descriptive set theoretic information. To effect this enrichment, we show that many of these invariants may be naturally regarded as functors to the category, introduced herein, of groups with a Polish cover. The resulting definable invariants provide far stronger means of classification. In the present work we focus on the first derived functors of and . The resulting definable for pairs of countable abelian groups and definable for towers of Polish abelian groups substantially refine their classical counterparts. We show, for example, that the definable is a fully faithful contravariant functor from the category of finite‐rank torsion‐free abelian groups with no free summands; this contrasts with the fact that there are uncountably many non‐isomorphic such groups with isomorphic classical invariants . To facilitate our analysis, we introduce a general Ulam stability framework for groups with a Polish cover; within this framework we prove several rigidity results for non‐Archimedean abelian groups with a Polish cover. A special case of our main result answers a question of Kanovei and Reeken regarding quotients of ‐adic groups. Finally, using cocycle superrigidity methods for profinite actions of property (T) groups, we obtain a hierarchy of complexity degrees for the problem of classifying all group extensions of by up to base‐free isomorphism, when for prime numbers and .

Funder

National Science Foundation

Victoria University of Wellington

European Research Council

Publisher

Wiley

Reference75 articles.

1. Linear algebraic groups and countable Borel equivalence relations

2. On approximations of groups, group actions and Hopf algebras;Alekseev M.;Rossiĭskaya Akademiya Nauk. Sankt‐Peterburgskoe Otdelenie. Matematicheskiĭ Institut im. V. A. Steklova. Zapiski Nauchnykh Seminarov (POMI),1999

3. Erweiterung von Gruppen und ihren Isomorphismen

4. Kazhdan's Property (T)

5. J.Bergfalk M.Lupini andA.Panagiotopoulos The definable content of homological invariants II: Čech cohomology and homotopy classification Forum of Mathematics Pi to appear.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3