The tangent complex and Hochschild cohomology of -rings

Author:

Francis John

Abstract

AbstractIn this work, we study the deformation theory of${\mathcal {E}}_n$-rings and the${\mathcal {E}}_n$analogue of the tangent complex, or topological André–Quillen cohomology. We prove a generalization of a conjecture of Kontsevich, that there is a fiber sequence$A[n-1] \rightarrow T_A\rightarrow {\mathrm {HH}}^*_{{\mathcal {E}}_{n}}\!(A)[n]$, relating the${\mathcal {E}}_n$-tangent complex and${\mathcal {E}}_n$-Hochschild cohomology of an${\mathcal {E}}_n$-ring$A$. We give two proofs: the first is direct, reducing the problem to certain stable splittings of configuration spaces of punctured Euclidean spaces; the second is more conceptual, where we identify the sequence as the Lie algebras of a fiber sequence of derived algebraic groups,$B^{n-1}A^\times \rightarrow {\mathrm {Aut}}_A\rightarrow {\mathrm {Aut}}_{{\mathfrak B}^n\!A}$. Here${\mathfrak B}^n\!A$is an enriched$(\infty ,n)$-category constructed from$A$, and${\mathcal {E}}_n$-Hochschild cohomology is realized as the infinitesimal automorphisms of${\mathfrak B}^n\!A$. These groups are associated to moduli problems in${\mathcal {E}}_{n+1}$-geometry, a less commutative form of derived algebraic geometry, in the sense of the work of Toën and Vezzosi and the work of Lurie. Applying techniques of Koszul duality, this sequence consequently attains a nonunital${\mathcal {E}}_{n+1}$-algebra structure; in particular, the shifted tangent complex$T_A[-n]$is a nonunital${\mathcal {E}}_{n+1}$-algebra. The${\mathcal {E}}_{n+1}$-algebra structure of this sequence extends the previously known${\mathcal {E}}_{n+1}$-algebra structure on${\mathrm {HH}}^*_{{\mathcal {E}}_{n}}\!(A)$, given in the higher Deligne conjecture. In order to establish this moduli-theoretic interpretation, we make extensive use of factorization homology, a homology theory for framed$n$-manifolds with coefficients given by${\mathcal {E}}_n$-algebras, constructed as a topological analogue of Beilinson and Drinfeld’s chiral homology. We give a separate exposition of this theory, developing the necessary results used in our proofs.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference56 articles.

1. HIGHER STRING TOPOLOGY ON GENERAL SPACES

2. Higher Topos Theory (AM-170)

3. J. Lurie , Derived algebraic geometry 2: noncommutative algebra, Preprint (2007), arXiv:math.CT/0702299.

4. The Lie algebra structure of tangent cohomology and deformation theory

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Skeleta and categories of algebras;Advances in Mathematics;2024-11

2. Higher chromatic Thom spectra via unstable homotopy theory;Algebraic & Geometric Topology;2024-03-18

3. Higher Deformation Quantization for Kapustin–Witten Theories;Annales Henri Poincaré;2024-02-16

4. Dirac Geometry I: Commutative Algebra;Peking Mathematical Journal;2023-06-21

5. Curved Koszul duality of algebras over unital versions of binary operads;Journal of Pure and Applied Algebra;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3