Dirac Geometry I: Commutative Algebra

Author:

Hesselholt LarsORCID,Pstra̧gowski PiotrORCID

Abstract

AbstractThe purpose of this paper and its sequel is to develop the geometry built from the commutative algebras that naturally appear as the homology of differential graded algebras and, more generally, as the homotopy of algebras in spectra. The commutative algebras in question are those in the symmetric monoidal category of graded abelian groups, and, being commutative, they form the affine building blocks of a geometry, as commutative rings form the affine building blocks of algebraic geometry. We name this geometry Dirac geometry, because the grading exhibits the hallmarks of spin in that it is a remnant of the internal structure encoded by anima, it distinguishes symmetric and anti-symmetric behavior, and the coherent cohomology of Dirac schemes and Dirac stacks, which we develop in the sequel, admits half-integer Serre twists. Thus, informally, Dirac geometry constitutes a “square root” of $$\mathbb {G}_m$$ G m -equivariant algebraic geometry.

Funder

Danmarks Grundforskningsfond

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Algebraic -theory of the two-periodic first Morava -theory;Transactions of the American Mathematical Society;2024-05-15

2. Descent in Tensor Triangular Geometry;Abel Symposia;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3