Author:
Liu Sheng-Chi,Masri Riad,Young Matthew P.
Abstract
AbstractLet $q$ be a prime and $- D\lt - 4$ be an odd fundamental discriminant such that $q$ splits in $ \mathbb{Q} ( \sqrt{- D} )$. For $f$ a weight-zero Hecke–Maass newform of level $q$ and ${\Theta }_{\chi } $ the weight-one theta series of level $D$ corresponding to an ideal class group character $\chi $ of $ \mathbb{Q} ( \sqrt{- D} )$, we establish a hybrid subconvexity bound for $L(f\times {\Theta }_{\chi } , s)$ at $s= 1/ 2$ when $q\asymp {D}^{\eta } $ for $0\lt \eta \lt 1$. With this circle of ideas, we show that the Heegner points of level $q$ and discriminant $D$ become equidistributed, in a natural sense, as $q, D\rightarrow \infty $ for $q\leq {D}^{1/ 20- \varepsilon } $. Our approach to these problems is connected to estimating the ${L}^{2} $-restriction norm of a Maass form of large level $q$ when restricted to the collection of Heegner points. We furthermore establish bounds for quadratic twists of Hecke–Maass $L$-functions with simultaneously large level and large quadratic twist, and hybrid bounds for quadratic Dirichlet $L$-functions in certain ranges.
Subject
Algebra and Number Theory
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献