Variance Estimates in Linnik’s Problem

Author:

Shubin Andrei1

Affiliation:

1. Institute of Discrete Mathematics and Geometry , TU Wien, Wiedner Hauptstr. 8-10, A-1040 Wien, Austria

Abstract

Abstract We evaluate the variance of the number of lattice points in a small randomly rotated spherical ball on a surface of 3-dimensional sphere centered at the origin. Previously, Bourgain, Rudnick, and Sarnak showed conditionally on the Generalized Lindelöf Hypothesis that the variance is bounded from above by $\sigma (\Omega ){N_n}^{1+\varepsilon }$, where $\sigma (\Omega )$ is the area of the ball $\Omega $ on the unit sphere and $N_n$ is the total number of solutions of Diophantine equation $x^2 + y^2 + z^2 = n$. Assuming the Grand Riemann Hypothesis and using the moments method of Soundararajan and Harper, we establish the upper bound of the form $c\sigma (\Omega ) N_n$, where $c$ is an absolute constant. This bound is of the conjectured order of magnitude.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference32 articles.

1. Central value of automorphic $L$-functions;Baruch;Geom. Funct. Anal.,2007

2. Arithmetic and equidistribution of measures on the sphere;Böcherer;Comm. Math. Phys.,2003

3. The Dirichlet series of Koecher and Maass and modular forms of weight $\frac {3}{2}$;Böcherer;Math. Z.,1992

4. Spatial statistics for lattice points on the sphere I: individual results;Bourgain;Bull. Iranian Math. Soc.,2017

5. Local Statistics of Lattice Points on the Sphere;Bourgain,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3