Author:
Houdayer Cyril,Ueda Yoshimichi
Abstract
Let $I$ be any nonempty set and let $(M_{i},\unicode[STIX]{x1D711}_{i})_{i\in I}$ be any family of nonamenable factors, endowed with arbitrary faithful normal states, that belong to a large class ${\mathcal{C}}_{\text{anti}\text{-}\text{free}}$ of (possibly type $\text{III}$) von Neumann algebras including all nonprime factors, all nonfull factors and all factors possessing Cartan subalgebras. For the free product $(M,\unicode[STIX]{x1D711})=\ast _{i\in I}(M_{i},\unicode[STIX]{x1D711}_{i})$, we show that the free product von Neumann algebra $M$ retains the cardinality $|I|$ and each nonamenable factor $M_{i}$ up to stably inner conjugacy, after permutation of the indices. Our main theorem unifies all previous Kurosh-type rigidity results for free product type $\text{II}_{1}$ factors and is new for free product type $\text{III}$ factors. It moreover provides new rigidity phenomena for type $\text{III}$ factors.
Subject
Algebra and Number Theory
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献