Author:
Boutonnet Rémi,Drimbe Daniel,Ioana Adrian,Popa Sorin
Abstract
AbstractWe prove that if A is a non-separable abelian tracial von Neuman algebra then its free powers A∗n,2≤n≤∞, are mutually non-isomorphic and with trivial fundamental group, $\mathcal{F}(A^{*n})=1$, whenever 2≤n<∞. This settles the non-separable version of the free group factor problem.
Publisher
Springer Science and Business Media LLC
Reference20 articles.
1. Boutonnet, R., Popa, S.: Maximal amenable masas of radial type in the free group factors. ArXiv preprint. arXiv:2302.13355
2. Dixmier, J.: Sous-anneaux abéliens maximaux dans les facteurs de type fini. Ann. of Math. (2) 59, 279–286 (1954)
3. Dykema, K.J., Rădulescu, F.: Compressions of free products of von Neumann algebras. Math. Ann. 316(1), 61–82 (2000)
4. Dykema, K.: Free products of hyperfinite von Neumann algebras and free dimension. Duke Math. J. 69(1), 97–119 (1993)
5. Dykema, K.: Interpolated free group factors. Pacific J. Math. 163(1), 123–135 (1994)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献