Author:
Hitching George H.,Hoff Michael
Abstract
Let $C$ be a Petri general curve of genus $g$ and $E$ a general stable vector bundle of rank $r$ and slope $g-1$ over $C$ with $h^{0}(C,E)=r+1$. For $g\geqslant (2r+2)(2r+1)$, we show how the bundle $E$ can be recovered from the tangent cone to the generalised theta divisor $\unicode[STIX]{x1D6E9}_{E}$ at ${\mathcal{O}}_{C}$. We use this to give a constructive proof and a sharpening of Brivio and Verra’s theorem that the theta map $\mathit{SU}_{C}(r){\dashrightarrow}|r\unicode[STIX]{x1D6E9}|$ is generically injective for large values of $g$.
Subject
Algebra and Number Theory
Reference30 articles.
1. On the base locus of the generalized theta divisor
2. Moduli of Vector Bundles on a Compact Riemann Surface
3. Injectivity of the Petri map for twisted Brill–Noether loci
4. Über die Darstellung der endlichen Gruppe durch lineare Substitutionen;Frobenius;Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin,1897
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献