Abstract
We introduce relative noncommutative Calabi–Yau structures defined on functors of differential graded categories. Examples arise in various contexts such as topology, algebraic geometry, and representation theory. Our main result is a composition law for Calabi–Yau cospans generalizing the classical composition of cobordisms of oriented manifolds. As an application, we construct Calabi–Yau structures on topological Fukaya categories of framed punctured Riemann surfaces.
Subject
Algebra and Number Theory
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献