Purity and 2-Calabi–Yau categories

Author:

Davison Ben

Abstract

AbstractFor various 2-Calabi–Yau categories $\mathscr{C}$ C for which the classical stack of objects $\mathfrak{M}$ M has a good moduli space $p\colon \mathfrak{M}\rightarrow \mathcal{M}$ p : M M , we establish purity of the mixed Hodge module complex $p_{!}\underline{{\mathbb{Q}}}_{{\mathfrak {M}}}$ p ! Q _ M . We do this by using formality in 2CY categories, along with étale neighbourhood theorems for stacks, to prove that the morphism $p$ p is modelled étale-locally by the semisimplification morphism from the stack of modules of a preprojective algebra. Via the integrality theorem in cohomological Donaldson–Thomas theory we then prove purity of $p_{!}\underline{{\mathbb{Q}}}_{{\mathfrak {M}}}$ p ! Q _ M . It follows that the Beilinson–Bernstein–Deligne–Gabber decomposition theorem for the constant sheaf holds for the morphism $p$ p , despite the possibly singular and stacky nature of ${\mathfrak {M}}$ M , and the fact that $p$ p is not proper. We use this to define cuspidal cohomology for ${\mathfrak {M}}$ M , which conjecturally provides a complete space of generators for the BPS algebra associated to $\mathscr{C}$ C . We prove purity of the Borel–Moore homology of the moduli stack $\mathfrak{M}$ M , provided its good moduli space ℳ is projective, or admits a suitable contracting ${\mathbb{C}}^{*}$ C -action. In particular, when $\mathfrak{M}$ M is the moduli stack of Gieseker semistable sheaves on a K3 surface, this proves a conjecture of Halpern-Leistner. We use these results to moreover prove purity for several stacks of coherent sheaves that do not admit a good moduli space. Without the usual assumption that $r$ r and $d$ d are coprime, we prove that the Borel–Moore homology of the stack of semistable degree $d$ d rank $r$ r Higgs sheaves is pure and carries a perverse filtration with respect to the Hitchin base, generalising the usual perverse filtration for the Hitchin system to the case of singular stacks of Higgs sheaves.

Publisher

Springer Science and Business Media LLC

Reference142 articles.

1. Achar, P.: Equivariant mixed Hodge modules. In: Lecture Notes from the Clay Mathematics Institute Workshop on Mixed Hodge Modules and Applications (2013). https://www.math.lsu.edu/~pramod/docs/emhm.pdf

2. Alper, J.: Good moduli spaces for Artin stacks. Ann. Inst. Fourier (Grenoble) 63(6), 2349–2402 (2013)

3. Alper, J., Hall, J., Rydh, D.: The étale local structure of algebraic stacks. arXiv preprint (2019). arXiv:1912.06162

4. Alper, J., Hall, J., Rydh, D.: A Luna étale slice theorem for algebraic stacks. Ann. Math. (2) 191(3), 675–738 (2020)

5. Alper, J., Halpern-Leistner, D., Heinloth, J.: Existence of moduli spaces for algebraic stacks. Invent. Math. 234(3), 949–1038 (2023)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3