On the equivariant Tamagawa number conjecture in tame CM-extensions, II

Author:

Nickel Andreas

Abstract

AbstractWe use the notion of non-commutative Fitting invariants to give a reformulation of the equivariant Iwasawa main conjecture (EIMC) attached to an extension F/K of totally real fields with Galois group 𝒢, where K is a global number field and 𝒢 is a p-adic Lie group of dimension one for an odd prime p. We attach to each finite Galois CM-extension L/K with Galois group G a module SKu(L/K) over the center of the group ring ℤG which coincides with the Sinnott–Kurihara ideal if G is abelian. We state a conjecture on the integrality of SKu (L/K) which follows from the equivariant Tamagawa number conjecture (ETNC) in many cases, and is a theorem for abelian G. Assuming the vanishing of the Iwasawa μ-invariant, we compute Fitting invariants of certain Iwasawa modules via the EIMC, and we show that this implies the minus part of the ETNC at p for an infinite class of (non-abelian) Galois CM-extensions of number fields which are at most tamely ramified above p, provided that (an appropriate p-part of) the integrality conjecture holds.

Publisher

Wiley

Subject

Algebra and Number Theory

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the p-adic Beilinson conjecture and the equivariant Tamagawa number conjecture;Selecta Mathematica;2021-10-27

2. On derivatives of p-adic L-series at s = 0;Journal für die reine und angewandte Mathematik (Crelles Journal);2020-05-01

3. On the non-abelian Brumer–Stark conjecture and the equivariant Iwasawa main conjecture;Mathematische Zeitschrift;2018-10-22

4. Integrality of Stickelberger elements attached to unramified extensions of imaginary quadratic fields;Journal of Number Theory;2018-06

5. Integrality of Stickelberger elements and the equivariant Tamagawa number conjecture;Journal für die reine und angewandte Mathematik (Crelles Journal);2016-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3