1. Barsky, D.: Fonctions zeta
$$p$$
p
-adiques d’une classe de rayon des corps de nombres totalement réels, Groupe d’Etude d’Analyse Ultramétrique (5e année: 1977/78), Secrétariat Math. Paris, pp. Exp. No. 16, 23 (1978)
2. Breuning, M., Burns, D.: Leading terms of Artin
$$L$$
L
-functions at
$$s=0$$
s
=
0
and
$$s=1$$
s
=
1
. Compos. Math. 143(6), 1427–1464 (2007)
3. Bray, H.G., Deskins, W.E., Johnson, D., Humphreys, J.F., Puttaswamaiah, B.M., Venzke, P., Walls, G.L.: Between Nilpotent and Solvable. Polygonal Publishing House, Washington, NJ (1982). (Edited and with a preface by Michael Weinstein)
4. Burns, D., Greither, C.: On the equivariant Tamagawa number conjecture for Tate motives. Invent. Math. 153(2), 303–359 (2003)
5. Burns, D.: On derivatives of
$$p$$
p
-adic
$$L$$
L
-series at
$$p$$
p
= 0. J. Reine Angew. Math. (2018).
https://doi.org/10.1515/crelle-2018-0020