Author:
Balakrishnan Jennifer S.,Dogra Netan
Abstract
The Chabauty–Kim method allows one to find rational points on curves under certain technical conditions, generalising Chabauty’s proof of the Mordell conjecture for curves with Mordell–Weil rank less than their genus. We show how the Chabauty–Kim method, when these technical conditions are satisfied in depth 2, may be applied to bound the number of rational points on a curve of higher rank. This provides a non-abelian generalisation of Coleman’s effective Chabauty theorem.
Subject
Algebra and Number Theory
Reference18 articles.
1. The Unipotent Albanese Map and Selmer Varieties for Curves
2. Selmer varieties for curves with CM Jacobians
3. Quadratic Chabauty: p-adic height pairings and integral points on hyperelliptic curves;Balakrishnan;J. Reine Angew. Math.,2016
4. Sur les points rationnels des courbes algébriques de genre supérieur à l’unité;Chabauty;C. R. Acad. Sci. Paris,1941
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献