Bounds on the Chabauty–Kim Locus of Hyperbolic Curves

Author:

Betts L Alexander1,Corwin David2,Leonhardt Marius3

Affiliation:

1. Department of Mathematics, Harvard University , 1 Oxford Street, Cambridge, MA 02138, USA

2. Department of Mathematics, Ben Gurion University of the Negev , P.O.B. 653 Be’er Sheva, 8410501 Israel

3. Institut für Mathematik, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 205, 69120 Heidelberg, Germany

Abstract

Abstract Conditionally on the Tate–Shafarevich and Bloch–Kato Conjectures, we give an explicit upper bound on the size of the $p$-adic Chabauty–Kim locus, and hence on the number of rational points, of a smooth projective curve $X/{\mathbb{Q}}$ of genus $g\geq 2$ in terms of $p$, $g$, the Mordell–Weil rank $r$ of its Jacobian, and the reduction types of $X$ at bad primes. This is achieved using the effective Chabauty–Kim method, generalizing bounds found by Coleman and Balakrishnan–Dogra using the abelian and quadratic Chabauty methods.

Publisher

Oxford University Press (OUP)

Reference34 articles.

1. An effective Chabauty–Kim theorem;Balakrishnan;Compos. Math.,2019

2. A non-abelian conjecture of Tate-Shafarevich type for hyperbolic curves;Balakrishnan;Math. Ann.,2018

3. Maximal multiplicative properties of partitions;Bessenrodt;Ann. Comb.,2016

4. Weight filtrations on Selmer schemes and the effective Chabauty–Kim method;Alexander Betts;Compos. Math.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3