Tropical descendant invariants with line constraints

Author:

Blomme Thomas1,Markwig Hannah2

Affiliation:

1. Université de Neuchâtel Neuchâtel Switzerland

2. Karl Eberhard Universität Tuebingen Germany

Abstract

AbstractVia correspondence theorems, rational log Gromov–Witten invariants of the plane can be computed in terms of tropical geometry. For many cases, there exists a range of algorithms to compute tropically: for instance, there are (generalised) lattice path counts and floor diagram techniques. So far, the cases for which there exist algorithms do not extend to non‐stationary rational descendant log Gromov–Witten invariants, that is, those where Psi‐conditions do not have to be matched up with the evaluation of a point. The case of rational descendant log Gromov–Witten invariants satisfying point conditions (without Psi‐conditions) and one Psi‐condition of any power combined with a line plays a particularly important role, because it shows up in mirror symmetry as contributions to coefficients of the ‐function. We provide recursive formulas to compute those numbers via tropical methods. Our method is inspired by the tropical proof of the WDVV equations. We also extend our study to counts involving two lines, both paired up with a Psi‐condition, appearing with power 1.

Funder

Deutsche Forschungsgemeinschaft

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

General Mathematics

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3