Genus 0 characteristic numbers of the tropical projective plane

Author:

Bertrand Benoît,Brugallé Erwan,Mikhalkin Grigory

Abstract

AbstractFinding the so-called characteristic numbers of the complex projective plane$ \mathbb{C} {P}^{2} $is a classical problem of enumerative geometry posed by Zeuthen more than a century ago. For a given$d$and$g$one has to find the number of degree$d$genus$g$curves that pass through a certain generic configuration of points and at the same time are tangent to a certain generic configuration of lines. The total number of points and lines in these two configurations is$3d- 1+ g$so that the answer is a finite integer number. In this paper we translate this classical problem to the corresponding enumerative problem of tropical geometry in the case when$g= 0$. Namely, we show that the tropical problem is well posed and establish a special case of the correspondence theorem that ensures that the corresponding tropical and classical numbers coincide. Then we use the floor diagram calculus to reduce the problem to pure combinatorics. As a consequence, we express genus 0 characteristic numbers of$ \mathbb{C} {P}^{2} $in terms of open Hurwitz numbers.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference58 articles.

1. Déterminations des caractéristique des systémes élémentaires de cubiques;Zeuthen;C. R. Math. Acad. Sci. Paris,1872

2. How to compute $\sum 1/ {n}^{2} $ by solving triangles;Passare;Amer. Math. Monthly,2008

3. The Characteristic Numbers of Quartic Plane Curves

4. Three-Dimensional Geometry and Topology, Volume 1

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Géométries énumératives complexe, réelle et tropicale;Journées mathématiques X-UPS;2024-08-06

2. Tropical descendant invariants with line constraints;Journal of the London Mathematical Society;2023-08-12

3. Counts of (tropical) curves in $E \times \mathbb{P}^1$ and Feynman integrals;Annales de l’Institut Henri Poincaré D;2022-04-11

4. Newton polytopes and tropical geometry;Russian Mathematical Surveys;2021-02-01

5. Moduli of stable maps in genus one and logarithmic geometry, II;Algebra & Number Theory;2019-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3