Counting rational points on projective varieties

Author:

Salberger Per1

Affiliation:

1. Mathematics Chalmers University of Technology Göteborg Sweden

Abstract

AbstractWe develop a global version of Heath‐Brown's p‐adic determinant method to study the asymptotic behaviour of the number N(W; B) of rational points of height at most B on certain subvarieties W of Pn defined over Q. The most important application is a proof of the dimension growth conjecture of Heath‐Brown and Serre for all integral projective varieties of degree d ≥ 2 over Q. For projective varieties of degree d ≥ 4, we prove a uniform version N(W; B) = Od,n,ε(BdimW) of this conjecture. We also use our global determinant method to improve upon previous estimates for quasi‐projective surfaces. If, for example, is the complement of the lines on a non‐singular surface X ⊂ P3 of degree d, then we show that . For surfaces defined by forms with non‐zero coefficients, then we use a new geometric result for Fermat surfaces to show that for Be.

Publisher

Wiley

Subject

General Mathematics

Reference51 articles.

1. Geometry of Algebraic Curves

2. Compact Complex Surfaces

3. The number of integral points on arcs and ovals

4. On Siegel's lemma

5. A note on a paper by R. Heath‐Brown: “The density of rational points on curves and surfaces”;Broberg N.;J. reine. angew. Math.,2004

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Points of bounded height on weighted projective spaces over global function fields;The Ramanujan Journal;2024-08-15

2. Special cubic zeros and the dual variety;Journal of the London Mathematical Society;2024-08-14

3. Rational points on a class of cubic hypersurfaces;Forum Mathematicum;2024-07-27

4. Dimension Growth for Affine Varieties;International Mathematics Research Notices;2024-06-19

5. Elliptic curves with a rational 2-torsion point ordered by conductor and the boundedness of average rank;Advances in Mathematics;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3