Dimension Growth for Affine Varieties

Author:

Vermeulen Floris1

Affiliation:

1. Department of Mathematics , KU Leuven, 3000 Leuven , Belgium

Abstract

Abstract We prove uniform upper bounds on the number of integral points of bounded height on affine varieties. If $X$ is an irreducible affine variety of degree $d\geq 4$ in ${\mathbb{A}}^{n}$, which is not the preimage of a curve under a linear map ${\mathbb{A}}^{n}\to{\mathbb{A}}^{n-\dim X+1}$, then we prove that $X$ has at most $O_{d,n,\varepsilon }(B^{\dim X - 1 + \varepsilon })$ integral points up to height $B$. This is a strong analogue of dimension growth for projective varieties, and improves upon a theorem due to Pila, and a theorem due to Browning–Heath-Brown–Salberger. Our techniques follow the $p$-adic determinant method, in the spirit of Heath-Brown, but with improvements due to Salberger, Walsh, and Castryck–Cluckers–Dittmann–Nguyen. The main difficulty is to count integral points on lines on an affine surface in ${\mathbb{A}}^{3}$, for which we develop point-counting results for curves in ${\mathbb{P}}^{1}\times{\mathbb{P}}^{1}$. We also formulate and prove analogous results over global fields, following work by Paredes–Sasyk.

Funder

F.W.O. Flanders

Publisher

Oxford University Press (OUP)

Reference25 articles.

1. The number of integral points on arcs and ovals;Bombieri;Duke Math. J.,1989

2. On Siegel’s lemma;Bombieri;Invent. Math.,1983

3. A note on a paper by R. Heath-Brown: “The density of rational points on curves and surfaces” [Ann. of Math. (2) 155 (2002), no. 2, 553–595; mr1906595];Broberg;J. Reine Angew. Math.,2004

4. Forms in many variables and differing degrees;Browning;J. Eur. Math. Soc. (JEMS),2017

5. Counting rational points on algebraic varieties;Browning;Duke Math. J.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3