An intrinsic approach to relative braid group symmetries on ı$\imath$quantum groups

Author:

Wang Weiqiang1,Zhang Weinan1

Affiliation:

1. Department of Mathematics University of Virginia Charlottesville Virginia USA

Abstract

AbstractWe initiate a general approach to the relative braid group symmetries on (universal) quantum groups, arising from quantum symmetric pairs of arbitrary finite types, and their modules. Our approach is built on new intertwining properties of quasi ‐matrices which we develop and braid group symmetries on (Drinfeld double) quantum groups. Explicit formulas for these new symmetries on quantum groups are obtained. We establish a number of fundamental properties for these symmetries on quantum groups, strikingly parallel to their well‐known quantum group counterparts. We apply these symmetries to fully establish rank 1 factorizations of quasi ‐matrices, and this factorization property, in turn, helps to show that the new symmetries satisfy relative braid relations. As a consequence, conjectures of Kolb–Pellegrini and Dobson–Kolb are settled affirmatively. Finally, the above approach allows us to construct compatible relative braid group actions on modules over quantum groups for the first time.

Funder

National Science Foundation

University of Virginia

Publisher

Wiley

Subject

General Mathematics

Reference37 articles.

1. On root systems and an infinitesimal classification of irreducible symmetric spaces;Araki S.;J. Math. Osaka City Univ.,1962

2. Quantum groups via Hall algebras of complexes

3. Formes presque‐déployées des algèbres de Kac‐Moody: classification et racines relatives;Back‐Valente V.;J. Algebra,1995

4. Universal K-matrix for quantum symmetric pairs

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Braid Group Action and Quasi-Split Affine $$\imath $$Quantum Groups II: Higher Rank;Communications in Mathematical Physics;2024-05-28

2. Braid group action and quasi-split affine quantum groups I;Representation Theory of the American Mathematical Society;2023-10-25

3. Differential operator realization of braid group action on ıquantum groups;Journal of Mathematical Physics;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3