Author:
BROWNING T. D.,HEATH-BROWN D. R.,Starr J. M.
Abstract
For any integers $d,n \geq 2$, let $X \subset \mathbb{P}^{n}$ be a non-singular hypersurface of degree $d$ that is defined over the rational numbers. The main result in this paper is a proof that the number of rational points on $X$ which have height at most $B$ is $O(B^{n - 1 + \varepsilon})$, for any $\varepsilon > 0$. The implied constant in this estimate depends at most upon $d$, $\varepsilon$ and $n$.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Special cubic zeros and the dual variety;Journal of the London Mathematical Society;2024-08-14
2. Correlations of Values of Random Diagonal Forms;International Mathematics Research Notices;2023-04-05
3. Counting rational points on projective varieties;Proceedings of the London Mathematical Society;2023-03-16
4. On the global determinant method;Bulletin de la Société mathématique de France;2023-03-08
5. Planes in cubic fourfolds;Algebraic Geometry;2023-03-01