A symplectic proof of a theorem of Franks

Author:

Collier Brian,Kerman Ely,Reiniger Benjamin M.,Turmunkh Bolor,Zimmer Andrew

Abstract

AbstractA celebrated theorem in two-dimensional dynamics due to John Franks asserts that every area-preserving homeomorphism of the sphere has either two or infinitely many periodic points. In this work we re-prove Franks’ theorem under the additional assumption that the map is smooth. Our proof uses only tools from symplectic topology and thus differs significantly from previous proofs. A crucial role is played by the results of Ginzburg and Kerman concerning resonance relations for Hamiltonian diffeomorphisms.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference34 articles.

1. [vdBGVW09] van den Berg J.-B. , Ghrist R. , Vandervorst R. and Wojcik W. , Braid Floer homology, Preprint (2009), arXiv:0910.0647.

2. Index Theory for Symplectic Paths with Applications

3. Symplectic Floer homology of area-preserving surface diffeomorphisms

4. Local Floer homology and the action gap

5. Morse theory for Lagrangian intersections

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contact three-manifolds with exactly two simple Reeb orbits;Geometry & Topology;2023-12-05

2. On the Hofer–Zehnder conjecture on weighted projective spaces;Compositio Mathematica;2023-01

3. On the Hofer–Zehnder conjecture on ℂPd via generating functions;International Journal of Mathematics;2022-09-15

4. Pseudo‐Rotations versus Rotations;Journal of the London Mathematical Society;2022-07-19

5. Another look at the Hofer–Zehnder conjecture;Journal of Fixed Point Theory and Applications;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3